A role for receptor-operated Ca2+ entry in human pulmonary artery smooth muscle cells in response to hypoxia.
نویسندگان
چکیده
Hypoxic pulmonary vasoconstriction (HPV) is an important homeostatic mechanism in which increases of [Ca2+]i are primary events. In this study, primary cultured, human pulmonary artery smooth muscle cells (hPASMC) were used to examine the role of TRPC channels in mediating [Ca2+]i elevations during hypoxia. Hypoxia (PO2) about 20 mm Hg) evoked a transient [Ca2+]i elevation that was reduced by removal of extracellular calcium. Nifedipine and verapamil, blockers of voltage-gated calcium channels (VGCCs), attenuated the hypoxia-induced [Ca2+)]i elevation by about 30%, suggesting the presence of alternate Ca2+ entry pathways. Expression of TRPC1 and TRPC6 in hPASMC were found by RT-PCR and confirmed by Western blot analysis. Antagonists for TRPC, 2APB and SKF96365, significantly reduced hypoxia-induced [Ca2+]i elevation by almost 60%. Both TRPC6 and TRPC1 were knocked down by siRNA, the loss of TRPC6 decreased hypoxic response down to 21% of control, whereas the knockdown of TRPC1 reduced the hypoxia response to 85%, suggesting that TRPC6 might play a central role in mediating hypoxia response in hPASMC. However, blockade of PLC pathway caused only small inhibition of the hypoxia response. In contrast, AICAR, the agonist of AMP-activated kinase (AMPK), induced a gradual [Ca2+]i elevation, whereas compound C, an antagonist of AMPK, almost abolished the hypoxia response. However, co-immunoprecipitation revealed that AMPKalpha was not colocalized with TRPC6. Our data supports a role for TRPC6 in mediation of the [Ca2+]i elevation in response to hypoxia in hPASMC and suggests that this response may be linked to cellular energy status via an activation of AMPK.
منابع مشابه
Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells.
Activating protein (AP)-1 transcription factors modulate expression of genes involved in cell proliferation and migration. Chronic hypoxia increases pulmonary artery smooth muscle cell proliferation by upregulating AP-1-responsive genes encoding for endothelium-derived vasoactive and mitogenic factors implicated in pulmonary hypertension development. The expression of AP-1 transcription factors...
متن کاملChronic Hypoxia Increases TRPC6 Expression and Basal Intracellular Ca2+ Concentration in Rat Distal Pulmonary Venous Smooth Muscle
BACKGROUND Hypoxia causes remodeling and contractile responses in both pulmonary artery (PA) and pulmonary vein (PV). Here we explore the effect of hypoxia on PV and pulmonary venous smooth muscle cells (PVSMCs). METHODS Chronic hypoxic pulmonary hypertension (CHPH) model was established by exposing rats to 10% O2 for 21 days. Rat distal PVSMCs were isolated and cultured for in vitro experime...
متن کاملInhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation.
Pulmonary vascular medial hypertrophy due to proliferation of pulmonary artery smooth muscle cells (PASMC) greatly contributes to the increased pulmonary vascular resistance in pulmonary hypertension patients. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) is an important stimulus for cell growth in PASMC. Resting [Ca2+]cyt, intracellularly stored [Ca2+], capacitative Ca2+ entry (CCE),...
متن کاملA Role for Receptor-Operated Ca Entry in Human Pulmonary Artery Smooth Muscle Cells in Response to Hypoxia
Hypoxic pulmonary vasoconstriction (HPV) is an important homeostatic mechanism in which increases of [Ca]i are primary events. In this study, primary cultured, human pulmonary artery smooth muscle cells (hPASMC) were used to examine the role of TRPC channels in mediating [Ca]i elevations during hypoxia. Hypoxia (PO2 about 20 mm Hg) evoked a transient [Ca]i elevation that was reduced by removal ...
متن کاملImpaired NO-dependent inhibition of store- and receptor-operated calcium entry in pulmonary vascular smooth muscle after chronic hypoxia.
We have recently demonstrated that chronic hypoxia (CH) attenuates nitric oxide (NO)-mediated decreases in pulmonary vascular smooth muscle (VSM) intracellular free calcium concentration ([Ca2+]i) and promotes NO-dependent VSM Ca2+ desensitization. The objective of the current study was to identify potential mechanisms by which CH interferes with regulation of [Ca2+]i by NO. We hypothesized tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological research
دوره 59 6 شماره
صفحات -
تاریخ انتشار 2010